Moore's Law

- Gordon Moore, Intel
 - 1965, 4 yrs after the 1st planar IC was discovered.
 - Predicted that the number of transistors per IC would double every 18 months.
 - Forecast that this trend would continue through 1975.
 - Through technology, Moore's Law has been maintained
When will computer hardware match the human brain?, Hans Moravec, http://www.transhumanist.com/volume1/moravec.htm
Computer Artificial Intelligence

Health & Safety Hazards

Brian Sherin
Process & Facility Hazards

Hazardous Energy

Ergonomics

Man-made & Natural Emergencies

Fire & Smoke

Hazardous Production Materials
Hazardous Energies

- Mechanical
 - Robotics
- Electrical
 - High & Low Voltage
- Chemical
 - Reactive materials
- Radiation
 - Non-ionizing radiation
- Thermal
 - Cryogenics & heat sources
- Pressure
 - Pneumatic
 - Hydraulic
 - Vacuum
Hazardous Energy: Radiation

- Ionizing radiation
 - Ion implantation, scanning electron microscopes
- Non-ionizing radiation
 - Static magnetic fields (0 Hz)
 - Sub radio-frequency fields (1 Hz - 3 kHz)
 - Power frequency fields (50 or 60 Hz)
 - Radio-frequency fields (3 kHz - 300 GHz)
 - Infrared energy (700 nm - 1 mm)
 - Visible light (400 - 700 nm)
 - Ultraviolet energy (180 - 400 nm)
 - Lasers
 - Noise (CE-MD: > 75dBA)
Controls

- Lockout / Tag-out Programs
- Isolation devices
- Interlocks
 - Hardware, software, firmware
- Emergency Shutdown
 - Emergency Machine Off (EMO)
- Operator Notification
 - Audio-visual
Controls

- Administrative controls
 - Type 1 (de-energized) through type 4 (> 30 V_{rms}, 42.4 V_{peak}, 60 VDC, 240 VA)
- Certified critical components
- Guards & Enclosures
- Labeling
Hazardous Production Materials (HPM)

- **Physical Hazard**
 - Explosives
 - Compressed Gases
 - Flammable & Combustible Liquids
 - Flammable solids
 - Organic peroxides
 - Class I through V
 - Oxidizers
 - Class 1 through 4
 - Pyrophorics
 - Unstable Reactives
 - Class 1 through 4
 - Water Reactives
 - Class 1, 2, 3
 - Cryogenic
 - Flammable or oxidizing

- **Health Hazard**
 - Highly toxic or toxic materials
 - Radioactive materials
 - Corrosives
 - Carcinogens, irritants, sensitizers, and other health hazards
HPM Controls

- Building design (H-Occupancy)
 - Quantity dependent
 - Control areas ("fire barrier")
 - Storage & Dispensing rooms
 - Separation of incompatibles
 - Exit & Service corridors
 - Ventilation / Exhaust systems
 - Clean-room recirculation
 - Sprinkler system design
 - Emergency Power
HPM Controls

- **Use & Handling**
 - Chemical containment
 - Storage
 - Delivery
 - Materials of construction
 - Workstation ventilation
 - Sub-atmospheric delivery systems
 - Monitoring & Alarms
 - Gas
 - Liquid
 - Point of use treatment systems
 - Automatic and manual shutdowns
 - Process liquid heating systems
 - Excess flow control / restrictive flow orifices
 - Emergency Plans and Teams
Fire Prevention

- Risk assessment must be performed
 - Evaluate materials of construction, regardless of quantity or application
 - Knobs, buttons, contactors, circuit boards, etc.
- Assess
 - size of each component,
 - total quantity and distribution of components
 - inherent properties of the materials
 - Exposure to oxidizers and ignition sources
Fire Prevention

- Risk Assessment: Process Chemicals
 - Evaluate type, concentration, state, temperature and pressure
 - Evaluate available flow, pressure and quantity of chemicals fed from facility
 - Inherent properties of chemicals (i.e., flammability)
 - Exposure to oxidizers and ignition sources
Fire Prevention

Risk Assessment: Sources of Ignition
- Internal sources
 - Electrical
 - Chemical (exothermic reactions)
 - Sudden changes in process conditions
 - Mechanical friction
- External sources

Risk Assessment: Oxidizers
- Assume oxygen is available in infinite supply to support combustion
- Determine if materials of construction may act as oxidizers under normal conditions or when exposed to heat
Fire Prevention

- Reduction of risk
 - Elimination of contributing factor(s)
 - Engineering control
 - Administrative control

- Detection

- Suppression
 - Approved for application
Ergonomics / Human Factors

- Eliminate or minimize ergonomic and human factors related hazards during installation, operation, and maintenance
 - Awkward postures
 - Repetitive motions
 - Access space, clearances, and reaches
 - Lifting of heavy or bulky objects
 - Difficult displays and hand controls

- Situations:
 - Manual handling
 - Wafer and cassette handling
 - Workstation design
 - Display locations
Process Hazard Analysis

- “What If” Analysis
- HazOp Study
- Procedural HazOp Study
- Fault Tree Analysis (FTA)
- Failure Modes, Effects and Criticality Analysis (FMECA)
SEMI S10 Risk Assessment

- SEMI S10-1296 - Safety Guideline for Risk Assessment
- Provides a consistent method for assessing risk associated with any hazard
- Uses severity and likelihood
- Divides risk level into five categories
 - Critical, High, Medium, Low, Slight
SEMI S10 Risk Matrix

<table>
<thead>
<tr>
<th>Severity</th>
<th>Risk Assessment Matrix</th>
<th>Frequent</th>
<th>Likely</th>
<th>Possible</th>
<th>Rarely</th>
<th>Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catastrophic</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Red**: Unlikely
- **Green**: Rarely
- **Blue**: Possibly
- **Yellow**: Likely
- **Orange**: Frequent

- **Catastrophic**: 1
- **Severe**: 2
- **Moderate**: 3
- **Minor**: 4